
ARCHITECTING A
SOUNDSCAPE:
A Spatial Interface for Designing
a Dynamic Sonic Environment

Alex Scarlatos, Margaret Schedel (faculty advisor)

RESEARCH AREA

Interaction design for sound mixing and experimentation.

Target Audiences:
Novices and professionals interested in rapid prototyping.

MOTIVATION
Modern tools for sound design are very good at
controlling audio with high precision and efficiency.

But the workflow is complex, difficult to grasp, and time-
consuming.

The workspace can grow very quickly and become
difficult to manage.

Images From: Logic Pro X, Apple

MOTIVATION

Working these effects requires detailed knowledge of what
each parameter does.

While this is useful if you
want very tight control
over your sound and are
being very precise about
your mix, the existing
interfaces are highly
unintuitive, especially for
sound novices.

Image From: Logic Pro X, Apple

MY SOLUTION

What could a better tool look like?

Observations:
• Because of everyday experiences, people can associate

physical variables with sound (ex: things will sound muffled on
the opposite side of a wall).

• A commonly known fact of visualization is that planar
variables are the strongest.

Conclusion: develop a spatial interface.

Interface Idea
Imagine you are looking down into a room.

There is a microphone in the room, and you hear every sound that
reaches it.

You are able to place objects in this room that make sound. As
these objects move closer to the microphone, they become louder.

The room can have walls passing through it, creating sonic barriers
in the space. Sounds will pass through and bounce off these
barriers, changing as they do. You are able to draw walls freely,
using various materials that will affect the sounds differently.

The environment provides
an easy to visualize, rapid
prototyping environment
for sound mixing. Engineers
can hear changes as they
draw and move objects.
And all tracks and effects
can be viewed at once,
allowing for a quick
analysis of a mix.

Application in Music Production

Sound Interacting with Barriers
In reality, sound waves bend around barriers, and then normalize out
over distance. Some sound will pass through these barriers because
of resonance, and some will be reflected off the barriers.

To simulate these properties, I had to make a few generalizations:
1. If a receptor is on the opposite side of a barrier from a sound

source, the amount of the original signal received will decrease
as it approaches the barrier. This relates to wave diffraction in
physics.

2. In the same situation, while approaching the barrier, the amount
of resonant sound received increases.

3. If the sound source and receptor are on the same side of a
barrier, the amount of reflected signal received will increase as
either node approaches the barrier.

4. If the barrier is infinitely thin and it is directly pointing at a sound
source, no sound will interact with it. So, as the angle between a
barrier and a node decreases, the above phenomena will be
experienced less.

Each barrier is assigned an ‘intensity’ (a relative amount that it will
affect sound), which increases as sources and receptors move closer
and become more perpendicular to it.

Simply by knowing the distances and angles between barriers and
nodes, we can estimate how much a sound will be affected on its
way to the receptor.

Formal Algorithm

𝑂𝑢𝑡𝑝𝑢𝑡 =

& 𝑠𝑠. 𝑠𝑜𝑢𝑟𝑐𝑒𝐷𝑎𝑡𝑎	 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑐𝑎𝑙𝑒𝑟	 ∗ (1− 𝐷)
+	𝑒𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎(𝑠𝑠)

<<	=	(>??	<@ABC	<@ADEF<)

𝑒𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 𝑠𝑠 =

&

𝑚.𝑑𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑙𝑡𝑒𝑟 𝑠𝑠. 𝑠𝑜𝑢𝑟𝑐𝑒𝐷𝑎𝑡𝑎 	∗

𝐷I = 𝑙𝑜𝑔 & 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦L
L	=	(L>DDMFD<	@N	I>OFDM>?	I	<FP>D>OMBQ	<<	>BC	D)

+
𝑚. 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑙𝑡𝑒𝑟 𝑠𝑠. 𝑠𝑜𝑢𝑟𝑐𝑒𝐷𝑎𝑡𝑎 	∗	

𝑅I = 	𝑙𝑜𝑔 & 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦L
L	=	(L>DDMFD<	@N	I>OFDM>?	I	><MCF	<<	>BC	D)

I	=	(>??	I>OFDM>?<)	

𝐷 = & 𝐷I
I	=	(>??	I>OFDM>?<)

intensitytransmitted = |sin(𝜽t)| * f(dt)
intensityreceived = |sin(𝜽r)| * f(dr)
intensityb = intensitytransmitted * intensityreceived * b.materialScaler

f(x) = 1 / (ax + 1): will approach 0 as x approaches infinity, a larger ‘a’ speeds the decline.
Sin(𝜽) = 1 when the line between the node and barrier is perpendicular to the barrier, and
it is 0 when the line is parallel. As a result, it acts as a perfect scaler for orientation.
Absolute value of sin(𝜽) ensures that 𝜽 > 180 and 𝜽 < 180 are treated equally.

While the algorithm achieves the goal of being spatially dependent
(rather than relying on pre-defined axes), it is not perfectly reflective of
what happens in reality. For example, barriers do not affect each
other by filtering sound already filtered by other barriers. Doing so
would be computationally expensive, and would prevent the
program from providing dynamic audio feedback. For future versions,
I’m considering utilizing raycasting to better prioritize barriers.

DEMO

OBSERVATIONS

I tested the app on several friends, as well as at URECA
on an iPad.

Positives:
• People seemed to be drawn in by the interface and enjoyed

experimenting with different sound sources and effects.
• Some also enjoyed how it was modeled around physical

acoustics.

Negatives:
• The iPad couldn’t handle the computations, and slowed

down significantly with just a few items on screen.
• The whole app might be too computationally intensive.

FUTURE WORK

• Add more user control
• Give emitters the ability to ignore certain barriers.
• Draw paths for emitters and receptors to follow.

• Make more useful for sound mixing & musical
performance
• Add more control over the effect parameters.
• Allow dynamic swapping of audio files.
• Add filters with more interesting effects.
• Barriers will be able to affect musical parameters of

generative emitters, like the tonality of a chord.
• Add in network aspect

• Social network interface where users can share, view and
edit each others creations.

